207 research outputs found

    Optical observation of subbands in amorphous silicon ultrathin single layers

    Full text link
    Copyright 1988 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 53(22), 2170-2172, 1987 and may be found at http://dx.doi.org/10.1063/1.10027

    Electroabsorption spectroscopy of amorphous Si/SiC quantum well structures

    Full text link
    Copyright 1989 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 55(8), 763-765, 1989 and may be found at http://dx.doi.org/10.1063/1.10179

    Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique

    Full text link
    Copyright 1987 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 51(16), 1259-1261, 1987 and may be found at http://dx.doi.org/10.1063/1.9869

    Solar energy conversion

    Get PDF
    If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience

    Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry

    Get PDF
    Modulated electroreflectance spectroscopy ΔR/R\Delta R/R of semiconductor self-assembled quantum dots is investigated. The structure is modeled as dots with lens shape geometry and circular cross section. A microscopic description of the electroreflectance spectrum and optical response in terms of an external electric field (F{\bf F}) and lens geometry have been considered. The field and lens symmetry dependence of all experimental parameters involved in the ΔR/R\Delta R/R spectrum have been considered. Using the effective mass formalism the energies and the electronic states as a function of F{\bf F} and dot parameters are calculated. Also, in the framework of the strongly confined regime general expressions for the excitonic binding energies are reported. Optical selection rules are derived in the cases of the light wave vector perpendicular and parallel to % {\bf F}. Detailed calculation of the Seraphin coefficients and electroreflectance spectrum are performed for the InAs and CdSe nanostructures. Calculations show good agreement with measurements recently performed on CdSe/ZnSe when statistical distribution on size is considered, explaining the main observed characteristic in the electroreflectance spectra

    Exchange Anisotropy in Epitaxial and Polycrystalline NiO/NiFe Bilayers

    Full text link
    (001) oriented NiO/NiFe bilayers were grown on single crystal MgO (001) substrates by ion beam sputtering in order to determine the effect that the crystalline orientation of the NiO antiferromagnetic layer has on the magnetization curve of the NiFe ferromagnetic layer. Simple models predict no exchange anisotropy for the (001)-oriented surface, which in its bulk termination is magnetically compensated. Nonetheless exchange anisotropy is present in the epitaxial films, although it is approximately half as large as in polycrystalline films that were grown simultaneously. Experiments show that differences in exchange field and coercivity between polycrystalline and epitaxial NiFe/NiO bilayers couples arise due to variations in induced surface anisotropy and not from differences in the degree of compensation of the terminating NiO plane. Implications of these observations for models of induced exchange anisotropy in NiO/NiFe bilayer couples will be discussed.Comment: 23 pages in RevTex format, submitted to Phys Rev B

    First application of mass measurement with the Rare-RI Ring reveals the solar r-process abundance trend at A=122 and A=123

    Full text link
    The Rare-RI Ring (R3) is a recently commissioned cyclotron-like storage ring mass spectrometer dedicated to mass measurements of exotic nuclei far from stability at Radioactive Isotope Beam Factory (RIBF) in RIKEN. The first application of mass measurement using the R3 mass spectrometer at RIBF is reported. Rare isotopes produced at RIBF, 127^{127}Sn, 126^{126}In, 125^{125}Cd, 124^{124}Ag, 123^{123}Pd, were injected in R3. Masses of 126^{126}In, 125^{125}Cd, and 123^{123}Pd were measured whereby the mass uncertainty of 123^{123}Pd was improved. This is the first reported measurement with a new storage ring mass spectrometery technique realized at a heavy-ion cyclotron and employing individual injection of the pre-identified rare nuclei. The latter is essential for the future mass measurements of the rarest isotopes produced at RIBF. The impact of the new 123^{123}Pd result on the solar rr-process abundances in a neutron star merger event is investigated by performing reaction network calculations of 20 trajectories with varying electron fraction YeY_e. It is found that the neutron capture cross section on 123^{123}Pd increases by a factor of 2.2 and β\beta-delayed neutron emission probability, P1nP_\mathrm{1n}, of 123^{123}Rh increases by 14\%. The neutron capture cross section on 122^{122}Pd decreases by a factor of 2.6 leading to pileup of material at A=122A=122, thus reproducing the trend of the solar rr-process abundances. The trend of the two-neutron separation energies (S2n_\mathrm{2n}) was investigated for the Pd isotopic chain. The new mass measurement with improved uncertainty excludes large changes of the S2n_\mathrm{2n} value at N=77N=77. Such large increase of the S2n_\mathrm{2n} values before N=82N=82 was proposed as an alternative to the quenching of the N=82N=82 shell gap to reproduce rr-process abundances in the mass region of A=112−124A=112-124
    • …
    corecore